
The Training Agents with Foundation Models Workshop at RLC 2024

Informing Reinforcement Learning Agents by
Grounding Language to Markov Decision Processes

Benjamin A. Spiegel, Ziyi Yang, William Jurayj, Ben Bachmann,
Stefanie Tellex, George Konidaris
Department of Computer Science
Brown University

Abstract

While significant efforts have been made to leverage natural language to accelerate
reinforcement learning, utilizing diverse forms of language efficiently remains unsolved.
Existing methods focus on mapping natural language to individual elements of MDPs
such as reward functions or policies, but such approaches limit the scope of language
they consider to make such mappings possible. We present an approach for leveraging
general language advice by translating sentences to a grounded formal language for
expressing information about every element of an MDP and its solution including
policies, plans, reward functions, and transition functions. We also introduce a new
model-based reinforcement learning algorithm, RLang-Dyna-Q, capable of leveraging
all such advice, and demonstrate in two sets of experiments that grounding language
to every element of an MDP leads to significant performance gains.

1 Introduction

Language serves as a powerful means for humans to share information about the world. Our
grasp of language allows us to learn more quickly or even skip learning altogether, performing new
tasks with ease by drawing upon the domain expertise of others in the form of advice. An open
question in reinforcement learning is how language advice can be leveraged to speed up learning
in Markov Decision Processes (MDPs), as learning tasks tabula rasa is exceptionally difficult—and
often impossible—in the real world. While many methods of leveraging advice for learning have
emerged in the literature, a coherent theory of language grounding that can comprehensively support
the use of language for reinforcement learning has not.

Virtually all research in language and RL grounds language to individual elements of MDPs such
as policies (Liang et al., 2023; Vemprala et al., 2023; Wu et al., 2023; Andreas et al., 2017), reward
functions (Squire et al., 2015), and goals (Colas et al., 2020). The main drawbacks of these works is
that they restrict their approach to narrow fragments of natural language. For example, a statement
like “if a mug is tipped over, its contents will spill out" clearly refers to a transition function, and
mapping this information to a policy is not straightforward. For this reason, works that ground
language to policies primarily focus on imperative sentences that naturally correspond to policies,
plans, or reward functions. Likewise, works that ground language to transition functions focus mainly
on declarative sentences, which may provide information about the dynamics of a domain. This
divergence in methodology suggests that not all language should be grounded to the same component
of an MDP, and that a general language grounding system for reinforcement learning agents should
be capable of grounding language to every element of an MDP and its solution.

We propose a novel approach to grounding natural language for use in reinforcement learning that
formulates the language grounding problem as a machine translation task from natural language to
RLang (Rodriguez-Sanchez et al., 2023), a formal language designed to express information about
every element of an MDP and its solution. Our approach is akin to semantic parsing (Mooney,

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 1: Our pipeline for translating natural language advice to RLang. We extend the original
RLang pipeline to include natural language translation and a Dyna-Q agent capable of leveraging all
forms of RLang advice.

2007)—a problem in natural language understanding that involves translating natural language into
a formal representation—because RLang is a grounded formal language that offers a systematic
means of expressing knowledge about an MDP. Such an approach calls for a learning agent capable of
leveraging all such MDP components, including a partial policy, reward function, plan, and transition
function. We therefore also introduce RLang-Dyna-Q, a model-based tabular RL agent based on
Dyna-Q Sutton et al. (1998), that can effectively leverage such advice. We demonstrate the strength
and generality of our approach by grounding a variety of natural language advice to RLang programs,
which RLang-Dyna-Q can use to significantly improve performance, sometimes making it possible to
solve tasks that vanilla Dyna-Q cannot solve.

2 Background

Reinforcement learning tasks are typically modeled as Markov decision processes (MDPs), which can
be represented by a tuple ⟨S, A, R, T, γ⟩, where S is the set of states, A is the set of actions, R is the
reward function, T is the transition function, and γ is the discount factor. The goal of an agent is to
find a policy, π(a|s)—a function that selects an action for each state—which maximizes the expected
sum of discounted rewards:

Eπ

[∞∑
t=0

γtR(st, at, st+1)
]

.

Value-based reinforcement learning algorithms rely on estimating the optimal action-value function
q∗, defined as

q∗(s, a) = max
π

qπ(s, a),

providing the expected return for taking action a in state s and subsequently following an optimal
policy (Sutton et al., 1998). Q-learning (Watkins, 1989) works to approximate q∗ by applying the
following update rule after taking roll-outs in the environment:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
.

Building on Q-learning, Dyna-Q (Sutton et al., 1998) introduces an additional component: a model
of the environment. While Q-learning learns from direct interaction with the environment alone,
Dyna-Q builds an internal model of the environment and updates the action-value function using
both real and simulated roll-outs, enabling faster convergence to the optimal action-value function.

2.1 Large Language Models for Machine Translation

Large Language Models (LLMs), often based on architectures like the Transformer (Vaswani
et al., 2017), are trained to predict the next token xt in a sequence given the preceding tokens

The Training Agents with Foundation Models Workshop at RLC 2024

Table 1: Selected MDP elements, corresponding RLang groundings, and natural language interpreta-
tions. The first column shows a component of the MDP, the second shows an RLang expression that
can inform it, and the last column contains a description of the expression.

MDP Component RLang Declaration Natural Language Inter-
pretation

Policy
π : S × A → [0, 1]

Policy build_bridge :
if at_workbench :

Execute use
else :

Execute go_to (workbench)

If you are at a workbench, use
it. Otherwise, go to it.

Plan
{A0, A1, ..., An}

Plan gather_materials :
Execute go_to (wood)
Execute pickup
Execute go_to (string)
Execute pickup

Go to the wood and pick it up,
then go to the string and pick
it up.

Reward, Transition Func.
Re : S × A × S →
Te : S × A × S → [0, 1]

Effect common_sense :
if at(Wall) and A == walk:

Reward 0, S’ -> S
if at(Lava) and A == walk:

Reward -1, S’ -> S*0

Walking into walls will get you
nowhere. Walking into lava
will kill you.

{x1, x2, ..., xt−1} via the following objective:

L = −
∑

t

log P (xt|x1, x2, . . . , xt−1).

In very large models, this objective results in emergent capabilities such as natural language under-
standing and generation, making them suitable for a variety of tasks beyond mere text completion
including question-answering, summarization, and more (Bubeck et al., 2023). One useful emergent
capability of LLMs is the machine translation of text from one language to another. While specialized
neural machine translation systems are trained using a parallel corpus to maximize the conditional
probability P (y|x), where x is the source sequence and y is the target sequence (Bahdanau et al.,
2014), LLMs have achieved similar translation capabilities despite not being trained explicitly on this
objective (Brown et al., 2020). Furthermore LLMs have been shown to be proficient at generating
text in formal languages such as Python given a language prompt (Chen et al., 2021; Li et al., 2023).

2.2 Leveraging Formal Specification Languages for Decision-Making

Formal specification languages have long been a useful tool to inform decision-making agents. In
classical planning, for example, it is standard to use the Planning Domain Description Language
(PDDL; Ghallab et al. 1998) and its probabilistic extension PPDDL (probabilistic PDDL; Younes &
Littman, 2004) to specify the complete dynamics of an environment. Other languages like Linear
Temporal Logic (LTL; Littman et al., 2017; Jothimurugan et al., 2019) and Policy Sketches (Andreas
et al., 2017) are sufficient for describing goals and hierarchical policies, respectively, for instruction-
following agents. While effective, one limiting factor of these formal languages is their narrow scope.
Natural language, by contrast, can be used to express information about nearly all the elements of
decision-making.

RLang (Rodriguez-Sanchez et al., 2023) is a recent formal language to emerge from the literature.
While previous languages for decision-making narrowly focus on individual components of an MDP
such as a policy or reward function, RLang was designed to provide information about every
component of a structured MDP and its solution. Formally, an RLang specification is a set of
RLang groundings G given by an RLang program P and an RLang vocabulary V , which may include
additional groundings for use across multiple MDPs. Some example RLang programs and their
natural language interpretations can be seen in Table 1. Crucially, advice specified by RLang can

The Training Agents with Foundation Models Workshop at RLC 2024

be compiled directly into many components of an MDP including policies, transition functions,
reward functions, and plans. Leveraging such components in a learning algorithm is not always
straightforward, however, and integrating more than one component into an agent is a non-trivial
problem that the original authors did not solve.

3 Grounding Natural Language Advice to RLang Programs

One major motivation for leveraging language advice in reinforcement learning is to supply agents
with the kinds of commonsense reasoning that language can easily express. Consider the LavaCrossing
environment in Figure 6. Any human interacting with this environment would quickly learn that
walking into the lava squares kills you, or likewise that walking into walls will do nothing at all.
Communicating this knowledge to others with language is natural for humans, but leveraging such
language advice in reinforcement learning is a major unsolved problem. An alternative approach to
supplying commonsense advice to RL agents involves specifying it in a formal language relevant to
decision-processes, which can more straightforwardly be used by a learning agent to improve learning.
Such an approach is limited only by the expressivity of the formal language and how it is used by
the learning agent.

As formal languages for decision-making grow more expressive, a natural next step for leveraging
language advice in reinforcement learning is to translate pieces of natural language advice into
statements in such formal languages. RLang is a highly expressive candidate for language grounding
because it is capable of specifying information about every element of a structured MDP and
its solution, including plans, policies, transition functions, and reward functions (see Table 2 in
Rodriguez-Sanchez et al. (2023)). Furthermore, we hypothesize that different kinds of advice can
most naturally be represented by different components of the MDP, and that methods that ground
language to a single component are insufficient to capture general language advice. For example, the
statement, “stacked dishes can topple if unevenly piled," is precisely a statement about transition
dynamics, and while it can be used ultimately in a plan or policy, the information contained in
the statement would not be retrievable if it were not represented as a partial transition function.
Likewise, the sentence, “wear oven mitts whenever handling pots and pans," is a statement about a
policy, and representing it as a reward function would only indirectly capture this advice.

We therefore formulate the language grounding problem in RL as a machine translation task from
natural language to RLang. Our task is as follows: given an RLang vocabulary V—a set of task-
general groundings that act as primitives in an RLang program—for a given MDP and a piece of
natural language advice u, we seek a function ϕ : u × V → Pu, where Pu is an executable RLang
program capturing the advice in u that can be leveraged by a learning agent. We propose to do
this translation using a pre-trained large language model in a two-stage pipeline by 1) identifying
which RLang grounding type would best capture the language advice; and 2) few-shot translating
the advice into an RLang program. Stage 1, the selection stage, instructs the LLM to classify a novel
piece of advice u into RLang grounding types such as Effects, Policies, and Plans, consulting a small
number of example classifications in the prompt. This ensures that the advice will be represented
by an appropriate component of the MDP.1 Stage 2, the translation stage, instructs the LLM to
translate u to an RLang program specifying the grounding type given by Stage 1 using roughly 5
example translations in the prompt that were hand-engineered to cover a wide range of RLang’s
syntax. In experiments we demonstrate that this pipeline effectively grounds the advice, yielding an
RLang program that may contain partial transition functions, reward functions, policies, and plans.
Our pipeline is illustrated in Figure 1.

3.1 RLang-Dyna-Q: A Single Agent for Leveraging All of RLang

In the original RLang paper, the authors presented a number of RLang-enabled agents—including
ones based on Q-Learning, PPO (Schulman et al., 2017), and DOORmax (Diuk et al., 2008)—each

1We assume that each piece of advice—which may contain multiple sentences—grounds to a single RLang grounding
type. This constraint can easily be relaxed in future work.

The Training Agents with Foundation Models Workshop at RLC 2024

capable of leveraging individual RLang groundings to improve learning. However, leveraging general
language advice requires integrating potentially all RLang groundings into a single learning agent.
We therefore introduce RLang-Dyna-Q, a learning agent based on Dyna-Q (Sutton et al., 1998) that
is capable of simultaneously leveraging a partial policy, plan, reward function, and transition function
given by an RLang program. Dyna-Q is an appropriate core learning agent because integrating
actions and dynamics is most natural in a model-based learning algorithm that explicitly represents
a policy, transition function, and reward function (see Algorithm 1, our modifications to Dyna-Q are
in blue).

4 Experiments

We hypothesize that RLang is an effective grounding for natural language advice in the context of
reinforcement learning. However, evaluating whether language advice u and RLang program Pu have
the same semantic content is difficult, so we designed our experiments to test a proxy objective of
primary interest: the agent’s performance on a learning task. If we provide advice that is helpful to the
agent, then grounding it properly should improve performance. We therefore assessed our translation
pipeline by evaluating agent performance on multiple custom tasks based on the Minigrid/BabyAI
(Chevalier-Boisvert et al., 2023; 2018) and VirtualHome (Puig et al., 2018) environments given expert
advice. We include ablations of different RLang components to demonstrate our auxiliary hypothesis,
that language is best grounded to every element of an MDP. We also run a small user study to assess
our pipeline’s efficacy on a wide range of non-expert language advice.

4.1 Leveraging Expert Advice in Minigrid

We designed custom environments using the Minigrid/BabyAI library, a platform for studying the
behavior of language-informed agents. In a typical Minigrid environment, an agent might reason
about opening and closing doors using keys which may be hidden in other rooms, managing a small
inventory of items, removing obstacles like balls out of the way to reach other rooms or objects, and
avoiding lava, all for the ultimate purpose of reaching a goal. Minigrid environments are an ideal
setting for our experiments for three reasons: 1) they can be solved using tabular RL algorithms,
which our informed, model-based RLang-Dyna-Q agent is based on; 2) there are clear and obvious
referents of language in both the state and action spaces of these environments (e.g. keys, doors, and
balls are represented neatly in a discrete state space and skills such as walking towards objects are
easy to implement); 3) many objects are shared across environments enabling the reuse of a common
RLang vocabulary for referencing these objects, which makes it easier for our translation pipeline to
ground novel advice.

For each environment, we provide an RLang vocabulary file V , a set of RLang groundings to be used
as primitives in a full RLang program. These vocabulary files are generated automatically for each
minigrid environment given a single general template, and include perception abstractions such as the
objects in the environment (e.g., yellow_key, red_door) and a short list of predicates for reasoning
with them (e.g., carrying(), reachable(), at()), as well as a single abstract action in the form
of a lifted skill for walking to any reachable object (go_to()). Importantly, these groundings have
semantically-meaningful labels, which enable a simple translation process. In our final experiment,
we relax this constraint somewhat, by determining the semantic label of some groundings with
an off-the-shelf vision model. All agents in the experiments, including the Random, Dyna-Q, and
RLang-Dyna-Q agents, are given access to this lifted skill. However, we do not provide the Dyna-Q
agent with any perception abstractions, as including them induces an equivalent state space in
the tabular RL setting. Likewise, the Random agent does not consider state when selecting an
action. In Stage 2 of the translation pipeline, we provide the list of available RLang groundings
that can be referenced in an RLang program along with the language advice. This prevents the
LLM from hallucinating imaginary skills, objects, and predicates when translating the advice into
an RLang program. The LLM never interacts with the MDP directly. The translation examples
used in the prompts in both stages of translation did not change across experiments, though these

The Training Agents with Foundation Models Workshop at RLC 2024

0 6 12 18 24 30 36 42 48
Episode Number

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

iv
e

Re
wa

rd

Results
Random
Dyna-Q
RLang-Dyna-Q-combined

“Go and pick up the green ball, and drop it on
your left, and then go pick up the blue key, and
go to the blue door and open it up and drop the
key on your left, and then go pick up the green
key, and go to the green door to open it and drop
the key on your left, and then go pick up the
purple ball and drop it on your right." “Nothing
will happen if you walk towards the wall, or try
to open a purple door without the purple key if
it is locked. The applies for the yellow door and
key as well as the red door and key." “If you can
reach the grey door and it is closed but you have
the key, open it if you are at it or otherwise go to
it. The same applies to the purple door, yellow
door, and red door. Lastly, if you find the goal
is reachable just go to the goal directly."

Figure 2: HardMaze Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is available in the appendix. Vanilla
Dyna-Q was not able to complete this task. The initial state of HardMaze is pictured on the left,
reward curves are in the center, and the language advice given is on the right.

translations are vocabulary-specific and grounding advice to environments outside of Minigrid will
require domain-compatible example translations.

We evaluated our grounding pipeline on four diverse Minigrid environments: LavaCrossing, Mul-
tiRoom, MidMazeLava, and HardMaze. For each environment, we collected multiple pieces of
natural language advice from human experts and translated them into RLang programs using our
two-stage pipeline. Each piece of advice was translated to a single RLang grounding type, and
each piece of advice contained multiple sentences. We then evaluated our RLang-Dyna-Q agent on
each environment with the translated RLang programs. In the MidMazeLave environment, advice
was grounded to multiple RLang types. We include additional results for RLang-Dyna-Q utilizing
only one type of advice at a time—Effects, Plans, or Policies—to isolate the impact of each on
performance.

In all of the experiments, RLang-Dyna-Q significantly outperformed vanilla Dyna-Q. In LavaCrossing
(see Figure 6), the agent is tasked with reaching a goal while avoiding lava, and merely advising the
agent about the dangers of lava and futility of walking into walls greatly increases performance. In
the MultiRoom environment (see Figure 8), in which the agent must open a series of doors to reach
a goal, providing a plan in natural language significantly increased performance. In MidMazeLava
(see Figure 7) and HardMaze (see Figure 2), the agent is faced with significantly more difficult tasks.
In the former, the agent must unblock doors and open them with keys to reach a goal while avoiding
lava, and in the latter the agent must traverse through many rooms, bringing keys across rooms
to doors which must be unblocked to reach a goal. We collected paragraphs-worth of advice for
these environments, which we translated into RLang plans, policies, and effects. In HardMaze, this
language advice made it possible to solve the task, as the vanilla Dyna-Q agent did no better than
random. For each experiment, 10 instances of each agent were run to generate a 95% confidence
interval on their cumulative reward over 50 episodes (LavaCrossing was run for 25 episodes only).
The number of timesteps per episode varied across environments.

4.2 Leveraging Expert Advice in VirtualHome

We ran additional experiments on custom environments based on the VirtualHome library, a platform
for simulating complex household activities. VirtualHome has an object-oriented state space, which
can be referenced natively in RLang. We engineered 2 tasks in a kitchen environment to assess our
language grounding pipeline: FoodSafety (see Figure 3), where the agent is tasked with putting a pie
into the fridge and salmon in to the microwave, and CouchPotato, where the agent is tasked with
bringing a remote control to a sofa and putting cereal into a kitchen cabinet, while avoiding picking
up toothpaste. In these environments, agents are given an RLang vocabulary file with groundings
for object-oriented perception and action abstractions such as the objects in the environment (e.g.
salmon_327, fridge_305), a short list of predicates (e.g. inside(), holding(), near()), and a set

The Training Agents with Foundation Models Workshop at RLC 2024

0 4 8 12 16 20 24 28
Episode Number

0

20

40

60

80

100

120

Cu
m

ul
at

iv
e

Re
wa

rd

Results
RLang-Dyna-Q-plan
RLang-Dyna-Q-policy
DynaQ
RLang-Dyna-Q-effect
RLang-Dyna-Q-combined

“Go to fridge and open it, and then go find the
pie and pick it up, walk back to the fridge and
put the pie in the fridge. You have to close the
fridge too", “If the salmon is in the microwave,
and you are at the microwave and it’s open, close
it. Otherwise if you are holding salmon, do the
following: open the microwave if you are near it
but it’s closed, put the salmon into the microwave
if it’s open and you’re near it, else walk to the
microwave.", “If the pie is in the fridge, and
the salmon is in the microwave, then closing the
fridge if the microwave is closed or closing the
microwave if the fridge is closed will give you
reward and end the episode."

Figure 3: FoodSafety Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is in the appendix. All RLang-Dyna-Q
agents outperformed Dyna-Q. The FoodSafety environment is pictured on the left, reward curves are
center, and the language advice given is on the right.

0 8 16 24 32 40 48 56 64 72
Episode Number

−100

−50

0

50

100

150

200

Cu
m

ul
at

iv
e

Re
wa

rd

Results
DynaQ
RLang-Dyna-Q-policy
RLang-Dyna-Q-plan
RLang-Dyna-Q-effect
RLang-Dyna-Q-combined

“If you’re holding the toothpaste and can drop
it, drop it.", “Go grab the remote control and
put it on the sofa.", “If you’re holding the tooth-
paste and are not trying to drop it, you will be
penalized. Also, nothing will happen if you try
to walk to the remote control, cereal, toothpaste,
or salmon, if you try to walk to them and they
are contained inside anything."

Figure 4: CouchPotato Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. All the RLang agents outperformed Dyna-Q with the exception of the
Effect-enabled agent. We note that bugs in the simulator non-deterministically prevent certain
actions from executing, so the advice we specify only applies part of the time.

of lifted skills (e.g. walk_to(), open, grab). These groundings have semantically meaningful labels,
which make them easy targets for grounding natural language.

Our experimental design here is identical to the Minigrid experiments: for each environment we
collected multiple pieces of language advice from human experts and translated them into RLang
programs via our two-stage pipeline. We then evaluated the performance of an RLang-Dyna-Q
agent on our environments in comparison to a vanilla Dyna-Q agent. In all of our experiments, the
RLang-informed agents significantly outperformed Dyna-Q. For each experiment, 10 instances of
each agent were run to generate a 95% confidence interval on their cumulative reward over 50 and
70 episodes for FoodSafety and CouchPotato, respectively. The maximum number of timesteps per
episode varied. The agent parameters are listed in the appendix.

4.3 Grounding Symbols with a Vision-Language Model

A crucial assumption made by our pipeline is that we are given semantically-meaningful labels for
the groundings we have, including labels for objects, skills, and predicates. Assigning relevant labels
for these groundings enables a relatively simple translation from natural language into RLang. In a
real-world setting, we imagine that the labels for these groundings can be generated in two ways: 1)
prescriptively, in the case of skill engineering by humans, and 2) via a pre-trained foundation model for
identifying predicates and objects in the environment. Implementing a full symbol-grounding system2

is outside the scope of this work, however, we performed an additional experiment to demonstrate
how the labels for object groundings could be easily extracted from images of the VirtualHome
environments using a vision-language model. Details can be found in Appendix C.

2Learning a mapping from symbolic labels to groundings is explored in Steels & Hild (2012).

The Training Agents with Foundation Models Workshop at RLC 2024

4.4 Evaluating Translation and RLang Efficacy

To assess RLang’s ability to capture the breadth of general language advice, we ran a small user study.
After explaining the controls for navigation, opening and closing doors, and picking up and dropping
objects, we asked 10 undergraduate students to solve the LockedRoom MiniGrid task (pictured in
Figure 5). We then asked them to describe in one or two sentences any advice they would give to an
agent completing the task for the first time. We collected their responses and ran them through our
translation pipeline to arrive at the RLang groundings in Table 3 of the Appendix. Of 10 pieces of
advice collected, 9 were translated into valid RLang programs, while 1 referenced groundings that
did not exist (e.g. second_left_door). We used the remaining valid RLang programs to inform 9
separate RLang-Dyna-Q agents that we compared against a baseline Dyna-Q agent given no advice.
With a few exceptions, providing advice either did not meaningfully impact performance over the
baseline or led to dramatic improvements in performance (see Table 2). In the cases where advice
did not impact performance, advice was translated into a valid RLang program, but the program
was missing a crucial step because it did not have an appropriate RLang grounding to reference (e.g.
it had no way of translating “the room with the red key"). This is not a limitation of our pipeline,
however, as a more expressive RLang vocabulary file could be used to achieve such a translation (e.g.
room_with(red_key) can evaluate to grey_door).

5 Related Works

Language in RL Luketina et al. (2019) identify two variations of language usage in the reinforce-
ment learning literature. The first, language-conditional RL, is one in which language use is a
necessary component of the task. This includes environments where agents must execute commands
in natural language (Mirchandani et al., 2021), or otherwise deal with language that is part of the
MDP, e.g., in the observation or action space (Fulda et al., 2017; Kostka et al., 2017). The second
variation is language-assisted RL, in which natural language is used to communicate task-related
information to an agent that is not necessary for solving the task. In these settings, language can
be used to inform policy structure (Watkins et al., 2023), reward functions (Goyal et al., 2019),
transition dynamics (Narasimhan et al., 2018), or Q-functions (Branavan et al., 2012).

Grounding Natural to Formal Languages for Planning and Learning The notion of
grounding natural language to a formal language for use in learning and planning is not new. Gopalan
et al. (2018) and Berg et al. (2020) translate natural language commands into Linear Temporal Logic
(LTL), which they use as reward functions for a learning agent or planning objectives, and Silver
et al. (2023) and Miglani & Yorke-Smith (2020) ground natural language into PDDL, which is fed to
a recurrent neural network to output solution plans. However, the advancement of large language
models (LLMs) has led to even more capable agents that for leveraging formal languages. In the
planning literature, Ahn et al. (2022); Huang et al. (2022); Song et al. (2023) use primitive formal
languages for executing policies on real robots or in embodied environments, Liu et al. (2023a); Xie
et al. (2023) translate natural language commands into PDDL plans with the help of LLMs, and Liu
et al. (2023b) proposed a modular system to ground natural language into LTL formulas. Code is
also a popular choice for formal languages: Liang et al. (2023); Vemprala et al. (2023); Wu et al.
(2023) use an LLM to generate Python functions as policies from natural language instructions; Singh
et al. (2022) also generates programs by prompting LLMs for code completion. For learning, more
recent works focus on reward design with LLMs for RL agents: Yu et al. (2023) specifies reward with
LLMs through code generation and Du et al. (2023) leverage commonsense reasoning for designing
reward functions. While many methods excel at grounding to formal languages, no existing method
seeks to ground language to every component of the MDP.

6 Discussion and Conclusion

Natural language grounding (Steels & Hild, 2012) has critical implications for all of AI. Just as RL
is intended as a model of intelligent decision making, we propose that its core formalisms offer a

The Training Agents with Foundation Models Workshop at RLC 2024

natural target for language grounding. If MDPs model human decision-making, and humans invented
language to share information that aids their decision-making, then the appropriate target for language
grounding should be an MDP, or a richer and perhaps more structured decision process reflecting the
complexity of human decision-making. One line of evidence for this claim is the direct correspondence
between parts of speech and elements of structured decision-processes (Rodriguez-Sanchez et al.,
2020). For example, the object classes in Object Oriented MDPs (Diuk et al., 2008) naturally
correspond to the concept of common nouns requiring determiners to single out class instances,
and the parameters in Parameterized Action MDPs Masson et al. (2016) naturally correspond to
adverbs for modifying the execution of discrete macro-actions (verbs).

More practically, knowledge expressed in natural language has immense potential to inform reinforce-
ment learning agents, and thereby alleviate the high sample complexity of having to learn tabula
rasa. We present a novel method for leveraging general natural language advice to expedite learning
in Markov Decision Processes by translating it into RLang, a formal language designed to specify
information about every element of an MDP and its solution. Our method can ground advice to
reward functions, transition functions, plans, and policies. We also introduce a modified Dyna-Q
agent capable of leveraging all of the types of information present in the partial MDP specification
output by RLang. Our findings show that our approach can leverage a wide variety of language
advice to accelerate learning.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
166–175. JMLR. org, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel Rotter-Aboyoun, Ellie Pavlick, and Stefanie
Tellex. Grounding Language to Landmarks in Arbitrary Outdoor Environments. In IEEE
International Conference on Robotics and Automation (ICRA), 2020.

S.R.K. Branavan, D. Silver, and R. Barzilay. Learning to win by reading manuals in a monte-carlo
framework. Journal of Artificial Intelligence Research, 43:661–704, apr 2012. doi: 10.1613/jair.3484.
URL https://doi.org/10.1613%2Fjair.3484.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023.

https://doi.org/10.1613%2Fjair.3484

The Training Agents with Foundation Models Workshop at RLC 2024

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Cédric Colas, Ahmed Akakzia, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud.
Language-conditioned goal generation: a new approach to language grounding for rl. arXiv preprint
arXiv:2006.07043, 2020.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,
pp. 240–247, 2008.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models, 2023.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David Wingate. What can you do with a rock?
affordance extraction via word embeddings, 2017.

M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL—The Planning Domain Definition Language, 1998. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.37.212.

Nakul Gopalan, Dilip Arumugam, Lawson Wong, and Stefanie Tellex. Sequence-to-Sequence Language
Grounding of Non-Markovian Task Specifications. In Proceedings of Robotics: Science and Systems,
Pittsburgh, Pennsylvania, 2018. doi: 10.15607/RSS.2018.XIV.067.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward shaping
in reinforcement learning, 2019.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents, 2022.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for
reinforcement learning tasks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Bartosz Kostka, Jaroslaw Kwiecieli, Jakub Kowalski, and Pawel Rychlikowski. Text-based adventures
of the golovin AI agent. In 2017 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, aug 2017. doi: 10.1109/cig.2017.8080433. URL https://doi.org/10.1109%2Fcig.
2017.8080433.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
https://doi.org/10.1109%2Fcig.2017.8080433
https://doi.org/10.1109%2Fcig.2017.8080433

The Training Agents with Foundation Models Workshop at RLC 2024

Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James MacGlashan.
Environment-independent task specifications via gltl. arXiv preprint arXiv:1704.04341, 2017.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+p: Empowering large language models with optimal planning proficiency, 2023a.

Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex, and
Ankit Shah. Lang2ltl: Translating natural language commands to temporal robot task specification,
2023b.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward
Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed
by natural language. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pp. 6309–6317. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/880. URL https://doi.org/10.
24963/ijcai.2019/880.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parameter-
ized actions. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), Feb. 2016. doi:
10.1609/aaai.v30i1.10226. URL https://ojs.aaai.org/index.php/AAAI/article/view/10226.

Shivam Miglani and N. Yorke-Smith. Nltopddl: One-shot learning of pddl models from natural lan-
guage process manuals. 2020. URL https://api.semanticscholar.org/CorpusID:231626460.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. ELLA: Exploration through learned
language abstraction. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=VvUldGZ3izR.

Raymond J Mooney. Learning for semantic parsing. In International Conference on Intelligent Text
Processing and Computational Linguistics, pp. 311–324. Springer, 2007.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for transfer in
deep reinforcement learning, 2018.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

R. Rodriguez-Sanchez, B.A. Spiegel, J. Wang, R. Patel, G.D. Konidaris, and S. Tellex. Rlang: A
declarative language for describing partial world knowledge to reinforcement learning agents. In
Proceedings of the Fortieth International Conference on Machine Learning, July 2023.

Rafael Rodriguez-Sanchez, Roma Patel, and George Konidaris. On the relationship between struc-
ture in natural language and models of sequential decision processes. In Language in Rein-
forcement Learning Workshop at ICML 2020, 2020. URL https://openreview.net/forum?id=
-KDnP4X1-0_.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans
using large language models, 2022.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models, 2023.

https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.24963/ijcai.2019/880
https://ojs.aaai.org/index.php/AAAI/article/view/10226
https://api.semanticscholar.org/CorpusID:231626460
https://openreview.net/forum?id=VvUldGZ3izR
https://openreview.net/forum?id=VvUldGZ3izR
https://openreview.net/forum?id=-KDnP4X1-0_
https://openreview.net/forum?id=-KDnP4X1-0_

The Training Agents with Foundation Models Workshop at RLC 2024

Shawn Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding english commands to
reward functions. In Robotics: Science and Systems, 2015.

Luc Steels and Manfred Hild. Language grounding in robots. Springer Science & Business Media,
2012.

Richard S Sutton, Andrew G Barto, et al. Introduction to Reinforcement Learning, volume 135. MIT
press Cambridge, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities, 2023.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Olivia Watkins, Trevor Darrell, Pieter Abbeel, Jacob Andreas, and Abhishek Gupta. Teachable
reinforcement learning via advice distillation, 2023.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with large
language models. Autonomous Robots, 2023.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models, 2023.

Håkan L. S. Younes and Michael L. Littman. Ppddl 1 . 0 : An extension to pddl for expressing
planning domains with probabilistic effects. In PPDDL 1 . 0 : An Extension to PDDL for
Expressing Planning Domains with Probabilistic Effects, 2004.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao,
Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei
Xia. Language to rewards for robotic skill synthesis, 2023.

The Training Agents with Foundation Models Workshop at RLC 2024

Table 2: User Study. We collected 10 pieces of advice from 10 undergraduate students for the
LockedRoom environment. For each piece of advice, 5 agent instances were run for 25 episodes on
the LockedRoom environment for 500 steps. The cumulative discounted reward for the 25 episodes is
in the first column along with a 95% confidence interval. The average percent increase in cumulative
discounted reward over the baseline is present in the second column. The second-to-last piece of
advice did not ground to a valid RLang program, so no experiment was run.

Avg Cumula-
tive Return

% improve-
ment

Natural Language Advice

17.86 ± 2.36 — No advice
22.01 ± 0.71 +23.24 “Remember to toggle to open doors."
16.79 ± 1.75 −5.99 “You don’t need to carry keys to open the grey door."
17.22 ± 1.75 −3.60 “Identify the room with the red key, move to that room by opening

the door. Pick up the key. Identify the room with the red door,
proceed there. Open the red door. Find the green square and go
there to finish the game."

23.55 ± 0.69 +31.86 “Move to the grey door, open it and enter the room until you get to
the red key, pick it up. Exit the room and move towards the red
door, open it and get into that room. Move to the green block and
enter it."

23.93 ± 0.37 +33.99 “Go to the grey door. open the grey door. go to the red key. pick up
the red key. go to the red door. open the red door. go to the green
square."

24.07 ± 0.22 +34.77 “Pick up the red key after opening the grey door. Then walk to the
red door, open it, and go to the goal."

17.57 ± 0.78 −1.63 “You cannot open the red door without a red key."
17.77 ± 0.54 −0.50 “Walking towards the red door is not very useful if it is closed."
— — “Go down until the second door on the left and pick up the key. Then

exit the room and go down until the next door on the left and use it
to open the door and get to the green box."

18.35 ± 1.93 +2.76 “Go to the room that has the red key, pick it up, and then go to the
room with a red door. Enter the room, and go to the green goal
object."

A Appendix

Figure 5: The initial state of the LockedRoom environment.

The Training Agents with Foundation Models Workshop at RLC 2024

0 3 6 9 12 15 18 21 24
Episode Number

0

5

10

15

20

Cu
m

ul
at

iv
e

Re
wa

rd

Results
Random
Dyna-Q
RLang-Dyna-Q-effect

Effect main:
if at(Lava) and A == forward :

S’ -> S*0
Reward -1

if at(Wall) and A == forward :
S’ -> S
Reward 0

Figure 6: LavaCrossing Experiment. The agent was given the following advice: “Walking into
lava will kill you. Walking into walls will do nothing." The initial state of LavaCrossing is pictured
left, reward curves are in the center, and the grounded RLang advice is on the right.

0 6 12 18 24 30 36 42 48
Episode Number

0

10

20

30

40

Cu
m

ul
at

iv
e

Re
wa

rd

Results
Random
Dyna-Q
RLang-Dyna-Q-effect
RLang-Dyna-Q-policy
RLang-Dyna-Q-plan
RLang-Dyna-Q-combined

“Pick up the blue ball and drop it to your
right. Then pick up the green key and
unlock the green door. Then drop the key
to your right." “Some general advice: If
you are carrying a key and its correspond-
ing door is closed, open the door if you
are at it, otherwise go to the door if you
can reach it. Otherwise, drop any keys for
doors you can’t reach. If you can reach the
goal, go to it." “Walking into lava will kill
you. If you’re not at a door, toggling will
do nothing. Trying to pick something up
while you’re carrying something is point-
less. Walking into walls will do nothing."

Figure 7: MidMazeLava Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is available in the appendix. All
RLang-Dyna-Q agents outperformed Dyna-Q. The initial state of MidMazeLava is pictured on the
left, reward curves are in the center, and the language advice given is on the right. The translated
RLang program is in the appendix.

0 6 12 18 24 30 36 42 48
Episode Number

0

10

20

30

40

Cu
m

ul
at

iv
e

Re
wa

rd

Results
Random
Dyna-Q
RLang-Dyna-Q-plan

Plan main:
Execute go_to (blue_door)
Execute toggle
Execute go_to (green_door)
Execute toggle
Execute go_to (grey_door)
Execute toggle
Execute go_to (purple_door)
Execute toggle

Figure 8: MultiRoom Experiment. The agent was given the following advice: “First go to the blue
door, then the green door, then the grey door, then the purple door." The initial state of MultiRoom
is pictured on the left, reward curves are center, and the translated advice is on the right.

The Training Agents with Foundation Models Workshop at RLC 2024

A.1 Prompts Used for Translation Pipeline for Minigrid Experiments

A.1.1 [Minigrid] Prompt used for Stage 1 of the translation pipeline. Given a new
piece of advice, we prompt the LLM to classify it as an Effect, Plan, or Policy.

RLang is a formal language for specifying information about every element of a Markov
Decision Process (S,A,R,T). Each RLang object refers to one or more elements of an MDP.
Here is a description of three important RLang groundings:

Policy: a direct function from states to actions, best used for more general com-
mands.
Effect: a prediction about the state of the world or the reward function.
Plan: a sequence of specific steps to take.

Your task is to decide which RLang grounding most naturally corresponds to a given piece of
advice:
Advice = “Don’t touch any mice unless you have gloves on."
Grounding: Effect
Advice = “Walking into lava will kill you."
Grounding: Effect
Advice = “First get the money, then go to the green square."
Grounding: Plan
Advice = “Go through the door to the goal."
Grounding: Plan
Advice = “If you have the key, go to the door, otherwise you need to get the key."
Grounding: Policy
Advice = “If there are any closed doors, open them."
Grounding: Policy

The Training Agents with Foundation Models Workshop at RLC 2024

A.1.2 [Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice
into an RLang plan.

Your task is to translate natural language advice to RLang plan, which is a sequence of
specific steps to take. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing plan
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use ‘green_door’
for the plan function.

Advice = “Open the door with the key and go through it to the goal"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to (yellow_key)
Execute pickup
Execute go_to (yellow_door)
Execute toggle
Execute go_to (goal)

Advice = “Get the key behind the red door to open the grey door. Then drop the key to the
left."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to (red_door)
Execute toggle
Execute go_to (grey_key)
Execute pickup
Execute go_to (grey_door)
Execute toggle
Execute left
Execute drop

The Training Agents with Foundation Models Workshop at RLC 2024

A.1.3 [Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice
into an RLang policy.

Your task is to translate natural language advice to RLang policy, which is a direct function
from states to actions. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing policy
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use “green_door’
for the policy function.

Advice = “If the yellow door is open, go through it and walk to the goal. Otherwise open the
yellow door if you have the key."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’, ‘car-
rying’]
Policy main:

if yellow_door . is_open :
Execute go_to (goal)

elif carrying (yellow_key) and at(yellow_door) and not yellow_door . is_open :
Execute toggle

Advice = “If you don’t have the key, go get it."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘grey_key’, ‘red_door’, ‘grey_door’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘carrying’]
Policy main:

if at(grey_key):
Execute pickup

elif not carrying (grey_key):
Execute go_to (grey_key)

Advice = “If you are carrying a ball and its corresponding box is closed, open the box if you
are at it, otherwise go to the box if you can reach it."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (green_ball) and not green_box . is_open :

if at(green_box):
Execute toggle

elif reachable (green_box):
Execute go_to (green_box)

Advice = “Drop any balls for boxes you can’t reach"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (green_ball) and not reachable (green_box):

Execute drop
if carrying (purple_ball) and not reachable (purple_box):

Execute drop

The Training Agents with Foundation Models Workshop at RLC 2024

Advice = “if you have any key for a door that you cannot reach, you should drop it"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (green_key) and not reachable (green_door):

Execute drop
if carrying (purple_key) and not reachable (purple_door):

Execute drop
if carrying (red_key) and not reachable (red_door):

Execute drop

Advice = “Hey listen, you can open the door if you have the key and at the door when the
door is closed"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (purple_key) and not purple_door . is_open and at(purple_door):

Execute toggle

The Training Agents with Foundation Models Workshop at RLC 2024

A.1.4 [Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice
into an RLang effect.

Your task is to translate natural language advice to RLang effect, which is a prediction about
the state of the world or the reward function. For each instance, we provide a piece of advice
in natural language, a list of allowed primitives, and you should complete the instance by
filling the missing effect function. Don’t use any primitive outside the provided primitive list
corresponding to each instance, e.g., if there is no ‘green_door’ in the primitive list you must
not use ‘green_door’ for the effect function.

Advice = “Don’t go to the door without the key"
Primitives = [‘yellow_door’, ‘goal’, ‘pickup’, ‘yellow_key’, ‘toggle’, ‘go_to’, ‘carrying’, ‘at’]
Effect main:

if at(yellow_door) and not carrying (yellow_key):
Reward -1

Advice = “Don’t walk into closed doors. If you’re tired, don’t go forward."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Effect main:
if at(yellow_door) and yellow_door . is_closed and A == forward :

Reward -1
S’ -> S

elif tired () and A == forward :
Reward -1

Advice = “Walking into balls is pointless. You will die if you walk into keys. Trying to open a
box when you aren’t near it will do nothing."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Effect main:
if at(Ball) and A == forward :

Reward 0
S’ -> S

elif at(Key) and A == forward :
Reward -1
S’ -> S*0

elif at(Box) and A == toggle :
Reward 0
S’ -> S

The Training Agents with Foundation Models Workshop at RLC 2024

A.2 Prompts Used for Translation Pipeline for VirtualHome Experiments

A.2.1 [VirtualHome] Prompt used for Stage 1 of the translation pipeline. Given a new
piece of advice, we prompt the LLM to classify it as an Effect, Plan, or Policy.

RLang is a formal language for specifying information about every element of a Markov
Decision Process (S,A,R,T). Each RLang object refers to one or more elements of an MDP.
Here is a description of three important RLang groundings:

Policy: a direct function from states to actions, best used for more general com-
mands.
Effect: a prediction about the state of the world or the reward function.
Plan: a sequence of specific steps to take.

Your task is to decide which RLang grounding most naturally corresponds to a given piece of
advice:
Advice = “Don’t touch any mice unless you have gloves on."
Grounding: Effect
Advice = “Walking into lava will kill you."
Grounding: Effect
Advice = “First get the money, then go to the green square."
Grounding: Plan
Advice = “Go through the door to the goal."
Grounding: Plan
Advice = “If you have the key, go to the door, otherwise you need to get the key."
Grounding: Policy
Advice = “If there are any closed doors, open them."
Grounding: Policy
Advice = “Open any doors if they are closed."
Grounding: Policy

The Training Agents with Foundation Models Workshop at RLC 2024

A.2.2 [VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of
advice into an RLang plan.

Your task is to translate natural language advice to RLang plan, which is a sequence of
specific steps to take. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing plan
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use ‘green_door’
for the plan function.

Advice = “Open the door with the key and go through it to the goal"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to (yellow_key)
Execute pickup
Execute go_to (yellow_door)
Execute toggle
Execute go_to (goal)

Advice = “Get the key behind the red door to open the grey door. Then drop the key to the
left."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to (red_door)
Execute toggle
Execute go_to (grey_key)
Execute pickup
Execute go_to (grey_door)
Execute toggle
Execute left
Execute drop

Advice = "Get the key behind the red door to open the grey door." Primitives = [’Agent’, ’Wall’,
’GoalTile’, ’Lava’, ’Key’, ’Door’, ’Box’, ’Ball’, ’left’, ’right’, ’forward’, ’walk_to’, ’open’, ’close’,
’putin’, ’grab’, ’inside’, ’grey_key_11’, ’red_door’, ’grey_door_127’, ’agent’, ’purple_ball’,
’is_on_a’, ’at’, ’at_any’, ’in_inventory’]

Plan main:
Execute walk_to (red_door)
Execute open(red_door)
Execute walk_to (grey_key_11)
Execute grab(grey_key_11)
Execute walk_to (grey_door_127)
Execute open(grey_door_127)

The Training Agents with Foundation Models Workshop at RLC 2024

A.2.3 [VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of
advice into an RLang policy.

Your task is to translate natural language advice to RLang policy, which is a direct function
from states to actions. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing policy
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use “green_door’
for the policy function.

Advice = “If the yellow door is open, go through it and walk to the goal. Otherwise open the
yellow door if you have the key."
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’, ‘car-
rying’]
Policy main:

if yellow_door . is_open :
Execute go_to (goal)

elif carrying (yellow_key) and at(yellow_door) and not yellow_door . is_open :
Execute toggle

Advice = “If you don’t have the key, go get it"
Primitives = [’Agent’, ’Wall’, ’GoalTile’, ’Lava’, ’Key’, ’Door’, ’Box’, ’Ball’, ’left’, ’right’,
’forward’, ’pickup’, ’drop’, ’toggle’, ’done’, ’pointing_right’, ’pointing_down’, ’pointing_left’,
’pointing_up’, ’go_to’, ’step_towards’, ’grey_key_11’, ’red_door’, ’grey_door’, ’agent’,
’purple_ball’, ’is_on_a’, ’at’, ’at_any’, ’in_inventory’]

Policy main:
if at(grey_key_11):

Execute pickup
elif not carrying (grey_key_11):

Execute go_to (grey_key_11)

Advice = “If you’re at the fridge, close it."
Primitives = [’Toothpaste’, ’Bedroom’, ’Character’, ’Cereal’, ’Bathroom’, ’Sofa’, ’Cabinet’,
’Salmon’, ’Pie’, ’Kitchentable’, ’Remotecontrol’, ’Fridge’, ’Microwave’, ’Kitchen’, ’Bookshelf’,
’Livingroom’, ’walk_to’, ’open’, ’close’, ’putin’, ’puton’, ’grab’, ’drop’, ’can_drop’, ’is_drop’,
’inside’, ’inside_something’, ’on’, ’at’, ’is_closed’, ’is_open’, ’holding’, ’near’, ’character_1’,
’kitchen_205’, ’bookshelf_249’, ’fridge_305’, ’oven_133’, ’pie_319’, ’chicken_127’, ’cabi-
net_19’]
Policy main:

if at(fridge_305):
Execute close (fridge_305)

The Training Agents with Foundation Models Workshop at RLC 2024

A.2.4 [VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of
advice into an RLang effect.

Your task is to translate natural language advice to RLang effect, which is a prediction about
the state of the world or the reward function. For each instance, we provide a piece of advice
in natural language, a list of allowed primitives, and you should complete the instance by
filling the missing effect function. Don’t use any primitive outside the provided primitive list
corresponding to each instance, e.g., if there is no ‘green_door’ in the primitive list you must
not use ‘green_door’ for the effect function.

Advice = “Don’t go to the door without the key"
Primitives = [‘yellow_door’, ‘goal’, ‘pickup’, ‘yellow_key’, ‘toggle’, ‘go_to’, ‘carrying’, ‘at’]
Effect main:

if at(yellow_door) and not carrying (yellow_key):
Reward -1

Advice = “Don’t walk into closed doors, since it takes no effect"
Primitives = [’Agent’, ’Wall’, ’GoalTile’, ’Lava’, ’Key’, ’Door’, ’Box’, ’Ball’, ’left’, ’right’,
’forward’, ’pickup’, ’drop’, ’toggle’, ’done’, ’pointing_right’, ’pointing_down’, ’pointing_left’,
’pointing_up’, ’go_to’, ’step_towards’, ’agent’, ’goal’, ’is_on_a’, ’at’, ’at_any’, ’in_inventory’]

Effect main:
if at(yellow_door) and not yellow_door . is_open and A == forward :

Reward -1
S’ -> S

Advice = “Walking to a broken object won’t do anything. You can’t grab the ball if it’s inside
something."
Primitives = [’Agent’, ’Wall’, ’GoalTile’, ’Lava’, ’Key’, ’Door’, ’Box’, ’Ball’, ’is_broken’,
’left’, ’right’, ’forward’, ’grab’, ’drop’, ’toggle’, ’done’, ’pointing_right’, ’pointing_down’,
’pointing_left’, ’pointing_up’, ’inside_something’, ’go_to’, ’step_towards’, ’agent’, ’goal’,
’is_on_a’, ’at’, ’at_any’, ’in_inventory’, ’gate_12’, ’door_16’, ’ball_121’]

Effect main:
if A == walk_to (gate_12) and is_broken (gate_12):

S’ -> S
if A == walk_to (door_16) and is_broken (door_16):

S’ -> S
if A == grab(ball_121) and inside_something (ball_121):

S’ -> S

Advice = “Don’t go to the purple ball"
Primitives = [’Agent’, ’Wall’, ’GoalTile’, ’Lava’, ’Key’, ’Door’, ’Box’, ’Ball’, ’left’, ’right’, ’for-
ward’, ’walk_to’, ’open’, ’close’, ’putin’, ’grab’, ’inside’, ’holding’, ’grey_key_11’, ’red_door’,
’grey_door_127’, ’agent’, ’purple_ball’, ’is_on_a’, ’at’, ’at_any’, ’in_inventory’]

Effect main:
if A == walk_to (purple_ball):

Reward -1

The Training Agents with Foundation Models Workshop at RLC 2024

Advice = “If you put the pie into the microwave and the chicken into the oven, and make sure
that they are both on, you will get reward and the episode will end."
Primitives = [’Toothpaste’, ’Bedroom’, ’Character’, ’Cereal’, ’Bathroom’, ’Sofa’, ’Cabinet’,
’Salmon’, ’Pie’, ’Kitchentable’, ’Remotecontrol’, ’Fridge’, ’Microwave’, ’Kitchen’, ’Bookshelf’,
’Livingroom’, ’walk_to’, ’open’, ’turn_on’, ’close’, ’putin’, ’puton’, ’grab’, ’drop’, ’can_drop’,
’is_drop’, ’inside’, ’inside_something’, ’on’, ’at’, ’is_closed’, ’is_open’, ’holding’, ’near’, ’char-
acter_1’, ’kitchen_205’, ’bookshelf_249’, ’fridge_305’, ’oven_133’, ’pie_319’, ’chicken_127’,
’microwave_19’]

Effect main:
if inside (pie_319 , microwave_19) and inside (chicken_127 , oven_133):

if is_closed (microwave_19) and at(oven_133) and A == turn_on (oven_133):
Reward 5
S’ -> S

elif is_closed (oven_133) and at(microwave_19) and A == turn_on (microwave_19
):

Reward 5
S’ -> S

Advice = “If you’re not trying to pick up the fridge, you will be penalized" Primitives
= [’Sofa’, ’Kitchentable’, ’Bathroom’, ’Salmon’, ’Kitchen’, ’Bookshelf’, ’Cereal’, ’Cabinet’,
’Livingroom’, ’Fridge’, ’Bedroom’, ’Character’, ’Toothpaste’, ’Pie’, ’Microwave’, ’Remote-
control’, ’walk_to’, ’open’, ’close’, ’putin’, ’puton’, ’grab’, ’drop’, ’can_drop’, ’is_drop’,
’inside’, ’inside_something’, ’on’, ’at’, ’fridge_305’, ’is_pickup’, ’is_closed’, ’is_open’, ’hold-
ing’, ’near’, ’character_1’, ’bathroom_11’, ’toothpaste_62’, ’bedroom_73’, ’kitchen_205’,
’kitchentable_231’, ’bookshelf_249’, ’fridge_305’, ’microwave_313’, ’pie_319’, ’salmon_327’,
’cereal_334’, ’livingroom_335’, ’sofa_368’, ’cabinet_415’, ’remotecontrol_452’]

Effect main:
if fridge_305 (fridge_305) and not is_pickup (A):

Reward -1

Advice = “if you have any key for a door that you cannot reach, you should drop it"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (green_key) and not reachable (green_door):

Execute drop
if carrying (purple_key) and not reachable (purple_door):

Execute drop
if carrying (red_key) and not reachable (red_door):

Execute drop

Advice = “Hey listen, you can open the door if you have the key and at the door when the
door is closed"
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’,
‘purple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:
if carrying (purple_key) and not purple_door . is_open and at(purple_door):

Execute toggle

A.3 User Study - Translated Advice for Minigrid Experiments

The Training Agents with Foundation Models Workshop at RLC 2024

Table 3: Advice from the user study translated to RLang.

Language Advice RLang Translation

“Remember to toggle to open doors." Policy main:
if at(yellow_door) and not yellow_door .
is_open :

Execute toggle
elif at(red_door) and not red_door .
is_open :

Execute toggle
elif at(purple_door) and not purple_door .
is_open :

Execute toggle
elif at(blue_door) and not blue_door .
is_open :

Execute toggle
elif at(green_door) and not green_door .
is_open :

Execute toggle
elif at(grey_door) and not grey_door .
is_open :

Execute toggle

“You don’t need to carry keys to open the
grey door."

Effect main:
if at(grey_door) and carrying (red_key):

S’ -> S
Reward -1

elif at(grey_door) and carrying_something
():

S’ -> S
Reward -1

“Identify the room with the red key, move to
that room by opening the door. Pick up the
key. Identify the room with the red door,
proceed there. Open the red door. Find
the green square and go there to finish the
game."

Plan main:
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to (goal)

“Move to the grey door, open it and enter
the room until you get to the red key, pick
it up. Exit the room and move towards the
red door, open it and get into that room.
Move to the green block and enter it."

Plan main:
Execute go_to (grey_door)
Execute toggle
Execute go_to (red_key)
Execute pickup
Execute go_to (grey_door)
Execute toggle
Execute go_to (red_door)
Execute toggle
Execute go_to (goal)

“Go to the grey door. open the grey door.
go to the red key. pick up the red key. go
to the red door. open the red door. go to
the green square."

Plan main:
Execute go_to (grey_door)
Execute toggle
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to (goal)

The Training Agents with Foundation Models Workshop at RLC 2024

Table 4: Advice from the user study translated to RLang (continued).

Language Advice RLang Translation

“Pick up the red key after opening the grey
door. Then walk to the red door, open it,
and go to the goal."

Plan main:
Execute go_to (grey_door)
Execute toggle
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to (goal)

“You cannot open the red door without a
red key."

Effect main:
if at(red_door) and not carrying (red_key)
:

S’ -> S
Reward -1

“Walking towards the red door is not very
useful if it is closed."

Effect main:
if at(red_door) and not(red_door . is_open)

and A == forward :
S’ -> S
Reward -1

“Go down until the second door on the left
and pick up the key. Then exit the room
and go down until the next door on the left
and use it to open the door and get to the
green box."

Plan main:
Execute go_to (second_left_door)
Execute pickup
Execute go_to (exit)
Execute go_to (next_left_door)
Execute toggle
Execute go_to (green_box)

“Go to the room that has the red key, pick
it up, and then go to the room with a red
door. Enter the room, and go to the green
goal object."

Plan main:
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to (goal)

The Training Agents with Foundation Models Workshop at RLC 2024

A.4 MidMazeLava - Translated Advice

Advice: “Pick up the blue ball and drop it to your right. Then pick up the green key and
unlock the green door. Then drop the key to your right. Some general advice: If you are
carrying a key and its corresponding door is closed, open the door if you are at it, otherwise
go to the door if you can reach it. Otherwise, drop any keys for doors you can’t reach. If you
can reach the goal, go to it. Walking into lava will kill you. If you’re not at a door, toggling
will do nothing. Trying to pick something up while you’re carrying something is pointless.
Walking into walls will do nothing."
Plan main:

Execute go_to (blue_ball)
Execute pickup
Execute right
Execute drop
Execute go_to (green_key)
Execute pickup
Execute go_to (green_door)
Execute toggle
Execute right
Execute drop

Policy main:
if carrying (green_key) and not green_door . is_open :

if at(green_door):
Execute toggle

elif reachable (green_door):
Execute go_to (green_door)

elif carrying (grey_key) and not grey_door . is_open :
if at(grey_door):

Execute toggle
elif reachable (grey_door):

Execute go_to (grey_door)

elif reachable (goal):
Execute go_to (goal)

elif carrying (green_key) and not reachable (green_door):
Execute drop

elif carrying (grey_key) and not reachable (grey_door):
Execute drop

Effect main:
if at(Lava) and A == forward :

S’ -> S*0
Reward -1

if not at(Door) and A == toggle :
S’ -> S
Reward 0

if carrying_something () and A == pickup :
S’ -> S
Reward 0

if at(Wall) and A == forward :
S’ -> S
Reward 0

The Training Agents with Foundation Models Workshop at RLC 2024

A.5 HardMazeLight - Translated Advice

Advice: “Go and pick up the green ball, and drop it on your left, and then go pick up the blue
key, and go to the blue door and open it up and drop the key on your left, and then go pick
up the green key, and go to the green door to open it and drop the key on your left, and then
go pick up the purple ball and drop it on your right. Nothing will happen if you walk towards
the wall, or try to open a purple door without the purple key if it is locked. The applies for
the yellow door and key as well as the red door and key. If you can reach the grey door and it
is closed but you have the key, open it if you are at it or otherwise go to it. The same applies
to the purple door, yellow door, and red door. Lastly, if you find the goal is reachable just go
to the goal directly."
Plan main:

Execute go_to (green_ball)
Execute pickup
Execute left
Execute drop
Execute go_to (blue_key)
Execute pickup
Execute go_to (blue_door)
Execute toggle
Execute left
Execute drop
Execute go_to (green_key)
Execute pickup
Execute go_to (green_door)
Execute toggle
Execute right
Execute drop
Execute go_to (purple_ball)
Execute pickup
Execute right
Execute drop

Effect main:
if at(Wall) and A == forward :

Reward 0
S’ -> S

elif at(purple_door) and purple_door . is_locked and A == toggle and not
carrying (purple_key):

Reward 0
S’ -> S

elif at(yellow_door) and yellow_door . is_locked and A == toggle and not
carrying (yellow_key):

Reward 0
S’ -> S

elif at(red_door) and red_door . is_locked and A == toggle and not carrying (
red_key):

Reward 0
S’ -> S

The Training Agents with Foundation Models Workshop at RLC 2024

Policy main:
if reachable (grey_door) and carrying (grey_key) and grey_door . is_locked :

if at(grey_door):
Execute toggle

else :
Execute go_to (grey_door)

elif reachable (purple_door) and carrying (purple_key) and purple_door .
is_locked :

if at(purple_door):
Execute toggle

else :
Execute go_to (purple_door)

elif reachable (yellow_door) and carrying (yellow_key) and yellow_door .
is_locked :

if at(yellow_door):
Execute toggle

else :
Execute go_to (yellow_door)

elif reachable (red_door) and carrying (red_key) and red_door . is_locked :
if at(red_door):

Execute toggle
else :

Execute go_to (red_door)

elif reachable (goal):
Execute go_to (goal)

The Training Agents with Foundation Models Workshop at RLC 2024

A.6 FoodSafety - Translated Advice

Advice: “Go to fridge and open it, and then go find the pie and pick it up, walk back to the
fridge and put the pie in the fridge. You have to close the fridge too", “If the salmon is in
the microwave, and you are at the microwave and it’s open, close it. Otherwise if you are
holding salmon, do the following: open the microwave if you are near it but it’s closed, put
the salmon into the microwave if it’s open and you’re near it, else walk to the microwave.",
“If the pie is in the fridge, and the salmon is in the microwave, then closing the fridge if the
microwave is closed or closing the microwave if the fridge is closed will give you reward and
end the episode."
Plan main:

Execute walk_to (fridge_305)
Execute open(fridge_305)
Execute walk_to (pie_319)
Execute grab(pie_319)
Execute walk_to (fridge_305)
Execute putin (fridge_305)
Execute close (fridge_305)

Policy main:
if inside (salmon_327 , microwave_313) and at(microwave_313) and is_open (
microwave_313):

Execute close (microwave_313)
elif holding (salmon_327):

if at(microwave_313) and is_closed (microwave_313):
Execute open(microwave_313)

elif at(microwave_313) and is_open (microwave_313):
Execute putin (microwave_313)

else :
Execute walk_to (microwave_313)

Effect main:
if inside (pie_319 , fridge_305) and inside (salmon_327 , microwave_313):

if is_closed (fridge_305) and at(microwave_313) and A == close (microwave_313
):

Reward 5
S’ -> S

elif is_closed (microwave_313) and at(fridge_305) and A == close (fridge_305)
:

Reward 5
S’ -> S

The Training Agents with Foundation Models Workshop at RLC 2024

A.7 CouchPotato - Translated Advice

Advice: “If you’re holding the toothpaste and can drop it, drop it.", “Go grab the remote
control and put it on the sofa.", “If you’re holding the toothpaste and not trying to drop it, you
will be penalized. Also, nothing will happen if you try to walk to the remote control, cereal,
toothpaste, or salmon, if you try to walk to them and they are contained inside anything."
Effect main:

if holding (toothpaste_62) and not is_drop (A):
Reward -1

if inside_something (remotecontrol_452) and A == walk_to (remotecontrol_452):
S’ -> S

if inside_something (cereal_334) and A == walk_to (cereal_334):
S’ -> S

if inside_something (toothpaste_62) and A == walk_to (toothpaste_62):
S’ -> S

if inside_something (salmon_327) and A == walk_to (salmon_327):
S’ -> S

Policy main:
if holding (toothpaste_62) and can_drop (toothpaste_62):

Execute drop(toothpaste_62)

Plan main:
Execute walk_to (remotecontrol_452)
Execute grab(remotecontrol_452)
Execute walk_to (sofa_368)
Execute puton (remotecontrol_452 , sofa_368)

B Additional Experiment: Grounding Commands to RLang Plans

We compare our method to SayCan (Ahn et al., 2022), which uses the commonsense reasoning
capacity of LLMs to satisfy a natural language request by generating a simple plan consisting of a
series of pre-engineered high-level robot skills. Adopting the same

In this experiment we demonstrate that, in a simulated 3-dimensional physical environment, RLang
can express the full range of natural language instructions necessary for a robot to complete various
tasks. By grounding natural language instructions to RLang policies over this environment, we
achieve performance on par with the results from the open-source tasks that the original SayCan
paper evaluated on, showing that RLang can be easily substituted for the formal language that
the SayCan authors developed for this specific task, allowing for generalization without sacrificing
performance.

Similar to the SayCan work, we assume that we are given a grounding tuple ⟨Π, S, A, ⟩, and a set of
skills Π, where each skill π ∈ Π performs an action with the robot arm to manipulate a block or
a bowl. We evaluate on the 8 unique tasks made available in the open-source version of SayCan,
running each task across 10 different randomly selected initial states, using both the native SayCan
language and RLang as the DSL for grounding natural language instructions to robot behavior.

Each task configuration that the original SayCan agent completes, is also completed by the RLang
agent. While their behavior on failure cases occasionally varied, these were generally caused by errors
in the vision model’s processing of shadows in the simulated environment. These generally caused the
textual scene description fed into GPT-3 to include a block where a bowl should be, and occasionally
incorrect color labels, which often provided the text-only planner with a nonsensical task that was
impossible to complete. Similarly, in cases where multiple action orders could satisfy the request,
the RLang and SayCan pipelines occasionally diverged in the order of actions. Nonetheless, neither
language grounding pipeline completed a task configuration that the other one did not.

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 9: Top: One configuration of the initial and completed states in the SayCan environment.
Bottom: the action sequence to execute on the instruction: “put all the blocks in the green bowl.”,
from the robot arm’s perspective

Table 5: Success rates of SayCan and RLang-based instruction grounding rate on each task, out of
10 random initial states.

Instruction SayCan NL2RLang

put all the blocks in different corners. 10 10
move the block to the bowl. 6 6
put any blocks on their matched colored bowls. 7 7
put all the blocks in the green bowl. 7 7
stack all the blocks. 8 8
make the highest block stack. 7 7
put the block in all the corners. 10 10
clockwise, move the block through all the corners. 10 10

C Visual grounding experiments in VirtualHome

D Experiment Parameters

In all experiments, for both Dyna-Q and RLang-Dyna-Q, we set the learning rate α to 0.1, the
discount factor γ to 0.99, ϵ1 = ϵ2 = 0.1, except when there is policy or plan advice, uniform
exploration, and 16 hallucinatory updates with the learned dynamics model.

The Training Agents with Foundation Models Workshop at RLC 2024

Figure 10: By programmatically interacting with unnamed objects in the environment, we can
capture images from different perspectives of each object, which are collectively seamed into one
combined figure and fed to the VLM with an explicit natural language query regarding the label of
the object. Then, the labels output by VLM will be provided to the translation pipeline as primitives
for grounding natural language advice into RLang.

Algorithm 1 RLang-Dyna-Q Agent
Given: πRLang, TRLang, RRLang from an RLang program
Init Q(s, a), T (s, a), R(s, a) for all s ∈ S, a ∈ A(s)
loop

s← current (nonterminal) state
a← ϵ1, ϵ2-greedy(s, πRLang, Q) # With prob. ϵ2, we execute the RLang plan or policy
Execute action a; observe next state s′, and reward r
Q← Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]
T (s, a), R(s, a)← s′, r # Update our model
for i = 1 to N1 do

s← random previously observed state
a← random action previously taken in s
s′, r ← T (s, a), R(s, a)
Q←Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]

end for
for i = 1 to N2 do

s← random previously observed state
a← random action not previously taken in s
s′, r ← TRLang(s, a), RRLang(s, a) Predict s′, r using dynamics given by RLang
Q←Q(s, a) + α [r + γ maxa′ Q(s′, a′)−Q(s, a)]

end for
end loop

For the translation step, we use the gpt-3.5-turbo-instruct model with a temperature of 0.

